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9- Partial Differential Equations: (10 hrs)

Wave equation, Laplace equation, solution of boundary condition problems,

general solution, solution by separation of variables.

Introduction

In second year, we considered the role of ordinary differential equations in
engineering. However, many physical processes fundamental to science and
engineering are governed by partial differential equations, which is equations
involving partial derivatives. The most familiar of these processes are heat
conduction and wave propagation. Unless the situation is very simple, there will
be many independent variables, for example a time variable t and a space variable
X, and the differential equations must involve partial derivatives.
The application of partial differential equations is much wider than the simple
situations already mentioned. Maxwell’s equations comprise a set of partial
differential equations that form the basis of electromagnetic theory, and are
fundamental to electrical engineers and physicists. The equations of fluid flow are
partial differential equations, and are widely used in aeronautical engineering,
acoustics.
One of the major difficulties with partial differential equations is that it is
extremely
difficult to illustrate their solutions geometrically, in contrast to single-variable
problems, where a simple curve can be used.
The solution of partial differential equations has been greatly eased by the use of
computers, which have allowed the rapid numerical solution of problems that
would otherwise have been intractable.
There are three basic types of equation that appear in most areas of science and

engineering, and it is essential to understand their solutions before any progress
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can be made on more complicated sets of equations, nonlinear equations or
equations with variable coefficients.
General discussion
The three basic types of equation are referred to as the wave equation, the heat-
conduction or diffusion equation and the Laplace equation.
1- Wave equation
2 2 2 2
S w

U

Thus the displacement of the string satisfies the one-dimensional wave equation
—_—=— 9.4)

and the propagation of the disturbance in the string is given by a solution of this
equation where ¢* = T/p.

Example 9.1  Show that

u=u sin(g) cos[n—ﬂ)
¢ L L

satisfies the one-dimensional wave equation and the conditions
(a) a given initial displacement u(x, 0) = u, sin(mx/L), and

(b) zero initial velocity, du(x, 0)/dr = 0.

Solution  Clearly the condition (a) is satisfied by inspection. If we now partially differentiate u
with respect to f,

du _ ugmc . (ﬂ:x) . (ﬂ:ct)
—=- sin| = |sin| —
dt L L L

so that at 1 = 0 we have du/dt = 0 and (b) is satisfied.
[t remains to show that (9.4) is also satisfied. Using the standard subscript notation
for partial derivatives,

E 2
Uy = J I; = —u”f sin [E] cos (E)
dx L L L

2 2 2
U, = a_?: = _HUTE—EC sin (E) cos (TI:_C'E]
ot L L L

so that the equation is indeed satisfied.
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Example 9.2 Verify that the function
x_etY
u zaexp{—(;—l —;J}

satisfies the wave equation (9.4). Sketch the graphs of the solution u against x at t =0,
t=2h/cand t=4h/c.

Solution  Evaluate the partial derivatives as

u, = —2a(x=ct) ~— Dexp |:— [5 - C_‘T:|
h h h

v = 2ac(x - Cr!exp |:_ (5 B C—IT]
h h

and

— 2 _ 2 3
U = % exp — [‘E _ C_I) +4H(I - CI) exp B (E _ C_I)
h h h h h h

_ 2 2 _ 22 2
", = 2:;(: exp _[E ~ c_r) N d4a(x frj c exp _(5 ~ c_rj
h h h h h h

Clearly (9.4) is satisfied by these second derivatives.

2- Heat-conduction or diffusion equation

1 du 2
lou_ vy
K dt ,

where k is the thermal conductivity and the minus sign takes into account the fact
that heat flows from hot to cold. Substitution for Q in (9.6) gives the one-dimensional
heat equation

2
or _ 2T

9,
at O

where x= k/cp is called the thermal diffusivity.
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Example 9.3

Solution

Example 9.4

Solution

Show that
T= Tw + (-Tm _ Tw) e—L-’(x—Urlfx (x = L;'t)

satisfies the one-dimensional heat-conduction equation (9.7), together with the bound-
ary conditions T = 7_asx s eeand 7'=T, atx = UL

The second term vanishes as x — oo, for any fixed ¢, and hence 7 — 7. When x = Uz,
the exponential term is unity, so the 7_s cancel and 7 = T,,. Hence the two boundary
conditions are satisfied. Checking both sides of the heat-conduction equation (9.7),

19T _ 1 U —vix-unix
= (T, -T)=¢
K dt x( ) K

FT U? _U(x—Un)
—=T,-T.)—e '
X K

which are obviously equal, so that the equation is satisfied.

The example models a block of material being melted at a temperature 7,,, with the
melting boundary having constant speed U, and with a steady temperature T, at great
distances. An application of this model would be a heat shield on a re-entry capsule
ablated by frictional heating.

Show that the function
2
T= l exp (_x_]
NI 4Kt

satisfies the one-dimensional heat-conduction equation (9.7). Plot T"against x for various
times f, and comment.

We first calculate the partial derivatives

2 2 2
ai":_lLexp[i)+Li—_lexp(i)

g 277 " \axt) tax f 4xt
2

or _ 1 ﬁfexp(i)

dx tdxt 4xt

and

T -1 —x —x —2x —x
7 37 EXP + 32 expl—
dx™ 2kt dxt/ 2xt " dxt 4Kt

3- Laplace equation
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Viu=0 (9.8)

The simplest physical interpretation of this equation has already been mentioned,
namely as the steady-state heat equation. So, for example, the two-dimensional
Laplace equation

could represent the steady-state distribution of temperature over a thin rectangular
plate in the (x, y) plane.

0

Example 9.5  Show that
u=x*—2xy — 6x%* + 2xp° +y*

satisfies the Laplace equation.

Solution Differentiating
w,=4x’ — 6x%y — 1207+ 2y°, u,=-2x"— 12Xy + 6xy” + 4°

Upe = 1207 = 120y — 12V%, u,,

=—12x*+ 12xy + 12_1;)2
so clearly
Up + 1, =0

and the two-dimensional Laplace equation is satisfied.

Example 9.6  Show that the function

az
W:Uy[l_ 2 2)
X +y

satisfies the Laplace equation, and sketch the curves y = constant.

Solution  First calculate the partial derivatives:

_ 2sza2
% (x2+y2)2

Ud’ 4 ZyEULIZ
eyt ()

_ 2yUd’ _8::4:2yUar2
T @y

= 2yUa’ N -’-1);[;’.(12 B SyaUa2
TE) ) (Y

y=U-
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Substituting into (9.8) gives

vzw: SyU.a2 i Sy{xz +yz)U.af2 —0
(12+y2)2 {xz—i—yzf

and hence the Laplace equation is satisfied.

Arbitrary functions and first-order equations

In each of the examples in this section, a solution has been given; it has been checked
that the solution satisfies the appropriate partial differential equation. In no case has the
boundary condition been part of the specification of the problem, although in several
cases boundary conditions were checked. In the next sections the boundary conditions
are given as part of the set-up of the example. This is the natural way that a physical
problem is specified and it proves to be a much tougher proposition.

The most significant difference between ordinary and partial differential equations
1s the treatment of the *arbitrary constants’. Consider the examples:

ODE PDE

Solve the ordinary differential equation Solve the partial differential equation

dE“f:}f &z!x,f!:3r2

dr ar

Integrating gives Integrating gives

W=r+kK 2Ax. 1) =0+ flx)
where K i1s an arbitrary constant, since where f{x) is an arbitrary function.
differentiating y(r) with respect to ¢ Ditferentiating with respect to ¢ produces
produces 31° whatever the value of the 3¢* for any function f{x) because x is kept
constant K. constant in the partial differentiation.

Extending this idea it can be seen that each partial integration introduces an arbitrary
function into the solution. Sufficient conditions must be given to determine these arbit-
rary functions. It is not always easy to decide exactly what conditions are required, but
in subsequent sections an idea will be given for the three classic equations, the wave
equation, the heat-conduction equation and the Laplace equation. An extended discus-
sion can be found in Section 9.8.
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Example 9.7

Solution

Consider for the moment a first-order equation. Such equations are of less interest in
applications to engineering and science, but there is a comprehensive theory for their
solution which will illustrate the use of arbitrary functions.

Find the general solution, u(x, t), of the partial differential equation

du  du
r5'r+ 0

o
and find the particular solution when u(x, 0) = x*

Change the variables z = x — r and 7= and use the chain rule to evaluate the terms in
the equation

gt drot 2T ot dz T

du _ Judz oudl _du

¢ dzdx dTdr o=

Putting these differentials into the equation

fu  du  du
0= = — T —
3 ax  or

Thus u(z, T) can be deduced as

u(z, T) = f(z), where f is an arbitrary function

Reverting to the original variables

u(x, 1) =flx=1)

and a general solution of the partial differential equation has been obtained.
For the particular solution with initial conditions written in parametric form, x = s,
=10, u=s, 1t is easily deduced that 5 = f{5) and hence

u(x, )= (x =1

Solution of the wave equation

In this section, we will try to solve the three types of PDE’s by three different

methods:

1- D’Alembert method.

2- Separated Variables.

3- Laplace method.
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D’'Alembert solution and characteristics

A classical solution of the one-dimensional wave equation

| Fu_ Ju
G ar o 64

is obtained by changing the axes to reduce the eguation to a particularly simple form.
Let

F=x+00 §=x=0ot

Then, using the chain rule procedure for transformation of coordinates (see Section
3.1.1),

U=, +2u, +u,
w,=cu, —2u_ +u,)

so that the wave equation (9.4) becomes
4t =0

This equation can now be integrated once with respect to s to give

u=2=60)

where 8 is an arbitrary function of r. Now, integrating with respect to r, we obtain
u=f(r) +g(s)

which, on substituting for » and s, gives the solution of the wave equation (%.4) as
u=flx+ct)+glx—ct) (9.17)

where fand g are arbitrary functions and fis just the integral of the arbitrary function 6.

The solution (9.17) is one of the few cases where the general solution of a partial
differential equation can be found. However, finding the precise form of the arbitrary
functions fand g that satisfy given initial data is not always easy. The initial conditions
must give just enough information to evaluate fand g, which are functions of the single
variables r = x + ef and 5 = x — et respectively.
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Example 9.10 Check that u = 1/[1 + (x + e)°] satisfies the wave equation (9.4) and show that it
represents a travelling wave in the —x direction.

Solution  Differentiating partially with respect to x and 7

¥l
= —2(x +ct) u _2|=1+3(x+ect)]

[T+ @x+e) 0 [l+(x+et))
wo=2elx+en) 2 =1+3(x+er)]
[1+(x+et)) L+ (x+en)f

and the wave equation is satistied. Plots of the function # against x for various values

Example 9.11 Solve the wave equation (9.4) subject to the conditions
{a) zero initial velocity, du(x, 0)/dt = 0 for all x, and

{b) an initial displacement given by

l-x (0=x=<1)
ux,)=Flx)=11+x (-1 =x=0)

0 otherwise

Solution  This example corresponds physically to an infinite string initially at rest, and displaced
as in Figure 9.9, which is then released.
u From (9.17) we have a solution of the wave equation as

| u=flx+et)+ glx—-crt)
We now fit the given boundary data. Condition {a) gives

(o}
=1 +] X [] = cff(x} - cg.!(:t] fﬂr a]] ¥
Figure 9.9 Initial
displacement in 50 that
Example 9.11. fo) - ¢(%) = K = an arbitrary constant
and thus

u=flx+er)+fix=-ci) =K

Similarly, condition (b) gives

Flx) = 2f(x) = K
s0 that
u=iF(x+ct)+iF(x-cr) (9.18)

We now have the solution to the equation in terms of the function F defined in condition
{b). (Note that the same is true for any function F.)

The solution is plotted in Figure 9.10 as v against x for given times. It may be
observed from this example that we have two travelling waves, one propagating to the
right and one to the left. The initial shape is propagated exactly, except for a factor of
two, and the shape discontinuities are not smoothed out, as noted in Section 9.2.1.
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Separated solutions

A method of considerable importance is the method of separation of variables. The
basis of the method is to attempt to look for solutions u(x, y) of a partial differential
equation as a product of functions of single variables

ulx, y) = X(x)1(y)

The advantage of this approach is that it is sometimes possible to find X and ¥ as solu-
tions of ordinary differential equations. These are very much easier to solve than partial
differential equations, and it may be possible to build up solutions of the full equation
in terms of the solutions for X and ¥. A simple example illustrates the general strategy.
Suppose that we wish to solve

@ + @ =)
dx gy
Then we should write # = X{x)¥ ) and substitute
dXx dy 1 dX 1d¥
Y=+X==0, or =======—
dx dy ' A dx Ydy

MNote that the partial differentials become ordinary differentials, since the functions are
just functions of a single variable. Now

LHS = %’% = a function of x only
1dY .

RHS = —= — = a function of y only
¥Ydy

Since LHS = RHS for all x and y, the only way that this can be achieved is for each side
to be a constant. We thus have two ordinary differential equations

ld¥_, _ld¥_j
X dr Y dy

These equations can be solved easily as
X=Be*, Y=Ce™

and thus the solution of the original partial differential equation is

u(x, y) = X(x)¥(y) = 44

where 4 = BC. The constants 4 and A are arbitrary. The crucial question is whether the
boundary conditions imposed by the problem can be satisfied by a sum of solutions of
this type.

The method of separation of variables can be a very powerful technique, and we
shall see it used on all three of the basic partial differential equations. It should be
noted, however, that all equations do not have separated solutions, see Example 9.2,
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and even when they can be obtained it is not always possible to satisfy the boundary
conditions with such solutions.

In the case of the heat-conduction equation and the wave equation, the form of one
of the functions in the separated solution is dictated by the physics of the problem. We
shall see that the separation technique becomes a little simpler when such physical
arguments are used. However, for the Laplace equation there is no help from the
physics, so the method just described needs to be applied.

In most wave equation problems we are looking for either a travelling-wave solution
as in Section 9.3.1 or for periodic solutions, as a result of plucking a violin string for
instance. It therefore seems natural to look for specific solutions that have periodicity
built into them. These will not be general solutions, but they will be seen to be useful
tor a whole class of problems. The essential mathematical simplicity of the method
comes from only having to solve ordinary differential equations.

The above argument suggests that we seek solutions of the wave equation

2 2
of the form either

u = sin {eAf)u(x) (9.24a)
or

# = cos (cAr(x) (9.24b)

both of which when substituted into (9.4) give the ordinary differential equation

2 -AU
dx

This is a simple harmonic equation with solutions v = sin Ax or v = cos Ax. We can thus
build up a general solution of (9.4) from linear multiples of the four basic solutions

4, = cos Acrsin Ax (9.253)
#, = cos Actcos Ax {9.25b)
u#; = sin Acrsin Ax (9.25¢c)
u, = sin Acrcos Ax {9.25d)

and trv to satisfy the boundary conditions using appropriate linear combinations of
solutions of this type. We saw an example of such a solution in Example 9.1.

Example 9.14 Solve the wave equation (9.4) for the vibration of a string stretched between the points
x =0 and x =/ and subject to the boundary conditions

(a) w(0,)=0 (r=0) (fixedatthe endx=20);
by w(ln)=0 (=0) (fixedattheendx=1{);
() Julx,0)dt=0 (0=x=/[) (withzero initial velocity);

(d) u(x, 0) = F(x) (given initial displacement).
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Solution

Consider the two cases
(i) F(x)=sin(mx/l) + ;sin(3mx/)

x (0=x=1i)

(i) Flx)= {

[-x ({=sx=]

Clearly, we are solving the problem of a stretched string, held atitsends x =0 and x = {
and released from rest.

By inspection, we see that the solutions (9.25h, d) cannot satisfy condition (a). We
see that condition (b) is satisfied by the solutions (9.25a, c), provided that

sinAl=0, or Al=nn (r=1,2,3,...)

It may be noted that only specific values of A in (9.25) give permissible solutions. Thus
the string can only vibrate with given frequencies, ne/2/. The solution (9.25) appropriate
to this problem takes the form either

i = Cos (}%m}sin (”—?] (9.26a)
or

u= sin('}%m)sin(n—?] (9.26b)
{n=1,2,3,...). Tosatisfy condition (c) for all x, we must choose the solution (9.26a)

and omit (9.26b). Clearly, it is not possible to satisfy the initial condition (d) with
{9.26a). However, because the wave equation is linear, any sum of such solutions is also
a solution. Thus we build up a solution

=

_ nemr . (mmx
H_Ebnms(_f )sm[ I}

n=1

Case (i)

The initial condition {(d) for u(x, ) gives

Z b, sin(w) = sin(m—x) - %sin(m]
s ! ! l
and the values of b, can be evaluated by inspection as

by=1,b,=0,b,=t,b,=b.=...=0

The full solution is therefore

mer) . (nx . Incry . (3mx
o5 3 5223

The solution is illustrated in Figure 9.17.
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Case (ii)

The condition (d) for w(x, 0) simply gives

(0=x=:/)

S £
;bnsm( ! )_ﬂﬂ_{!-x (H=x=<l)

and thus to determine b, we must find the Fourier sine series expansion of the function
f(x) over the finite interval 0 =< x =< [. We have from (7.33) that

b, = %Jﬂf{x} sin (%)dx

The complete solution of the wave equation in this case is therefore

u(x, 1) = 4—52 lzsinl{énn}cns[@)sin (E) (9.28)
n=1 R I!l I!l
or
u(x, 1)= ﬂ: [cas (cﬂ) sin (m_x} - ms(jf—m)sin (?ir)
n { { { {
().
Example 9.15 Solve the wave equation {9.4) for vibrations in an organ pipe subject to the boundary
conditions
fa) w(0,5)=0 (r=0) (theendx=0 isclosed);
(b)) Aull,y/dx=0 (r=10) (theendx=/{isopen);
fc) wx,0)=0 (0=x=/{) (the pipe is initially undisturbed);
{d) Julx,0)di=v=constant (0=x=/) (thepipeis given an initial uniform blow).
Solution From the solution (9.25), we deduce from condition (a) that solutions (9.25b, d) must be

omitted, and similarly from condition (c) that solution {9.25a) is not useful. We are left with
the solution (9.25¢c) to satisfy the boundary condition (b). This can only be satisfied if

cosAl=0, or Al=(n+i)m (n=0,1,2,...)
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Thus we obtain solutions of the form

1 [im+ 1
u= busin|i(n+’:mci| sin {n+1}rrx:| (n=0,1,2,...)

i !

giving a general solution

L
H—Eh 5m[ljj'1'+ :m:rz' SIHI:[” +;:I]'I:J::|

Eml
The condition (d) gives
(r+ -}m:r.' i+ ;-]n:x
= E b, sin [ 7 :|

which, on using (7.33) to obtain the coefficients of the Fourier sine series expansion of
the constant » over the finite interval 0 = x == /, gives

2v I _&ly 1

- (m+imin+iime 7e(2n+1Y

Our complete solution of the wave equation is therefore

u=2rs i | si L
=3 Eﬂ; 2“_”} sm|:(n+2}rrri|sm[[rr+2]m!]

ar,

u= Bly [sm(ﬂm\lsin{n—x |+ & sin| 3“”1 s'm[!ﬂ"'u
20/ LA 2

e 20/ ; I
+¢5[n[5—n“\|5in[5£"\|+ :|
= 20 rd N

Laplace transform solution

For linear problems that are time varying from 0 to oo, as in the case of the wave
equation, Laplace transforms provide a formal method of solution. The only
difficulty is whether the final inversion can be performed.

First we obtain the Laplace transforms of the partial derivatives

& o A
of the function w(x, r), r = 0. Using the same procedure as that used to obtain the
Laplace transform of standard derivatives in Section 3.3.1, we have the following:
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|':|]b|! B -:r&d d ™ -rf
{a) E‘{—}: g =—=dt=—| e uix, r)dr
dx 1. ar d_x‘ .

using Leibniz's rule {see Modern Engineering Mathematics) for differentiation
under an integral sign. Noting that

Plux, 0} =Wz, 5) = J. e uix, 1) dr

1]

we have
dul _d .,
E{E} % Uix, 5} (9.29)

(b}  Writing yix, 1) = du/dr, repeated application of the result (9.29) gives

r?_,t'x _d o N )
E{ax}' gL rle 0} = dx[d.r“x’ 9

50 that
2 217
55{'3_3} _d Ld‘:; 5) (9.30)

=[e™uix, 1}]; +5 ’-e'" wix, rydr = [0=-ulx, )] +sUix, 53

w0 that

E’{%} =sU(x, 5) —uix, 0}

where we have assumed that «(x, 1) is of exponential order.

{d) Writing vix, 1) = du/gr, repeated application of (9.31) gives

v _
E{E} =sVFix, si—vix, 1)

= 5[slix, 5) — u(x, 0)] — wix, 0)

w0 that
r;zu 2
E{E} =5 Ulx, s} - su(x, 0) - u,ix, 0)

where u(x, 0) denotes the value of Ju/drat r= 0.

Let us now return to consider the wave equation (9.4)
oFu _ P
A A

subject to the boundary conditions uix, 0) = fix) and Fu(x, 0)/dr = gix). Taking Laplace
transforms on both sides of (9.4) and using the results (9.30) and {9.32) gives

2L
e L‘i'ﬂ = slb'(x, 5} =glx)=-5fix) (9.33)
The problem has thus been reduced to an ordinary differential equation in Lix, 5) of a

straightforward type. It can be solved for given conditions at the ends of the x range,
and the solution can then be inverted to give wix, 7).
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Example 9.16  Solve the wave equation (9.4) for a semi-infinite string by Laplace transforms, given that
(a) wx,0)=0 {(x=0) (stringinitally undisturbed);
(b)  Juix, 0)dr=xe™ (x=0) (string given an initial velocity);
fc) w0, =0 (r=0) (stringheldatx=10);
(d) wx, =0 asx=seeforr=0 (stringheld at infinity).

Solution Using conditions {a) and (b) and substituting for f{x) and g{x) in the result {9.33), the
transformed equation in this case is
2
e d—z Lix,sh=sUix, sy -xe™*
dx
By seeking a particular integral of the form

U= gxe™ + fe™

we obtain a solution of the differential equation as

r _ Fre - E'-wd 2{'1."&
Uix,5) =4 +8e™ " = s | £ e
cla —=x cla -5

where 4 and 8 are arbitrary constants.

Transforming the given boundary conditions {c) and (d), we have L{0, 5) = 0 and
Lz, 5y = 0 a5 x = ==, which can be used to determine 4 and B. From the sacond
condition 4 =0, and the first condition then gives

_ 2d%a
{fla® - *F

50 that the solution becomes

! (czml-s!)

2 -EE s
Ulx, 5) = 2.:; faz . amee 1ez —lx+ 2c’la
(ciia -57) (/g =-57)

Fortunately in this case these transforms can be inverted from tables of Laplace
transforms.
Using the second shift theorem (3.43) together with the Laplace transform pairs
F(sinhwr} = —"—, Fcoshwr}=—

2
8 =@ -

E{mmshu}:-sinhm} - 1
) (5 - o)

2o

we ohtain the solution as

u=4 |:(c.r - x) cush{“—'x] Hi{er—x)-cre™" cmh[‘f_’]i|
c a |/ P

+ EI:E""“{::+ al sinh[c-r] -a sinh[“—'x] Hirr- x]:|
& a/) a i

where A1) is the Heaviside step function defined in Section 5.5.1.



